
This project uses YOLOv5 to detect objects from a video without audio and then play appropriate sounds for the identified objects
when they appear in the video using the freesound.org API. To create an interactive audio-visual experience, sounds can be
adjusted with different knobs enabling effects like reverb, filtering and pitching.

The website is served by a node.js web server, which is also
responsible for temporarily storing the uploaded video on its hard
drive. The file can be uploaded via a dropzone. After receiving the
file the web server sends a POST-request to the Python server which
then runs the inference on a pre-trained machine learning model based
on YOLOv5 for object detection.

After processing and analyzing the individual frames, the Python
server sends back a JSON object containing all the detected
animals and the respective framenumber to the node.js web server.

With this information, the web server makes multiple requests to the
freesound.org API. The response consists of list related to the
searched keywords and links to the specific audio files, which are
then integrated into the website to create all required audio
elements that stream the sound directly from the freesound servers.

The audio data can then be manipulated during playback using the
controls, for which we utilize the capabilities of the Web Audio API.

FEATURES

Sequ encediagram Automatie Foley Machine [1]

* Object detection with YOLOv5
* AJAX Upload for dynamic loading of page content
* File size limit 40 MB
* Automatic deletion of video files older than one
hour

Object Detection
There are two different types of models for object detection:
one-stage detectors and two-stage detectors. YOLOv5 is a one-
stage detector (green box). It uses a single neural network
to predict the object frames and class probabilities directly
from the full image in one pass.

Backbone: The backbone is the base classification model upon
which the object detection model is built. In YOLOv5, it is a
Convolutional Neural Network (CNN) that extracts various
features.

Neck: A series of different layers where image features are
combined and then sent to the head for prediction.

Head (Dense Prediction): The part of an object detector where
the prediction is made. It utilizes the features generated in
the neck.

Single·Stage Detector Architecture [2]

Model Adjustment
For our project, we adapted the output of
YOLOv5 to our needs. Specifically, we
disabled the video output including object
frames and made corresponding adjustments in
the code so that the detected objects are
returned in the form of key-value pairs.

In its current stage of development, the
Foley Machine only processes *.mp4 files.
However, the project has been constructed in
such a way that extensions, for example,
detection via webcam, YouTube, other video
formats, or images can be added gradually.

{

}

"detections": [
{
"60": [
{
"object": "bear'�
"count": "1"

}
]

},
{
"120": [
{

}
]

"object": "bird'�
"count": "3"

* Reading video metadata to calculate timestamps
* Audio manipulation with Web Audio API
* Freesound.org API requests (max. 60/min, 2000/day)
* API calls per video limited (max. 60/upload)
* Deployment on AWS

Audio Signal Flow
For the audio signal processing, we were inspired by the signal
path of a classical mixing console. Thus, for each channel
(sound), there is a separate gain control, an equalizer
section, and an effects path through which a reverb can
be mixed in. Subsequently, the position in the stereo signal
can be selected via a panorama control. All channels
ultimately run through a master gain control, with which the
overall volume of the mix is adjusted.

Web Audio API Node·Flow [3]

For the types of reverb, we opted for relatively common types
with the "Room", "Garage", and "Church" settings. To spice
things up a bit, we built our own input-response file for the
"Ping Pong" setting, which allows the echo to alternate between
coming from the left and right.

In the illustration, we see the waveform representation of the
input-response file for the "Room" reverb compared to that for
the "Ping Pong" reverb.

Waveform lnput·Response·Files (Room vs. Ping Pong)

Kevin Kröll I Moritz Uhlig I Leander Wernst

